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The process of internal gravity wave generation by the simple harmonic flow 
( U  = U, cos wot)  of a stably stratified fluid (Brunt-Viiisala frequency N )  over an 
obstacle is investigated in some detail. Attention is primarily directed to the 
behaviour of the solution in various limiting cases, and to estimating the flux of 
energy into the internal wave field. In general, waves are generated not only a t  
the fundamental frequency w,,, but also at all of its harmonics. But, for values 
of wo/N greater than about one half, the waves of fundamental frequency are 
dominant. For values of w,/N less than about one half, the quasi-static approxi- 
mation, in which the problem is considered as a slowly-varying version of the 
classical lee wave problem, is found to provide a viable estimate for the wave 
field. The general solution is found to compare favourably with the limited 
available experimental data. 

1. Introduction 
The generation of internal gravity waves by the flow of a density stratified 

fluid over an obstacle is a problem of great geophysical interest, which has 
attracted considerable attention over the years (see e.g. Miles 1969; Zeytounian 
1969a, b) .  Current interest in the problem derives in large measure from the 
fact that the momentum and energy transported by such waves may have a 
significant effect on large-scale geophysical flows (Lilly 1972). For the most 
part, work on this problem has been restricted to the meteorological context, 
in which the basic flow field may be considered steady. The corresponding oceano- 
graphic problem is somewhat complicated by the fact that, in addition to any 
steady background flows, we must also contend with significant time-dependent 
components of the flow associated with the ubiquitous tides. It is this latter 
problem to which the present work is addressed. 

In  considering the generation of internal waves by the back-and-forth motion 
of a stratified fluid over an obstacle, two important limiting cases may arise. 
In  the first case, the time scale associated with the background motion is very 
large compared with the characteristic time scale associated with the buoyancy 
restoring force in the stratified environment, and the problem is reduced to a 
slowly-varying or quasi-static version of the classical steady lee wave problem, 
with which the vast majority of the lee wave literature is concerned. Cartwright 
(1959) has discussed internal wave generation by tidal flows over sea floor 
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topography in this limit. The other limiting case, referred to here as the acoustic 
limit, arises when the horizontal excursion of fluid elements convected by the 
background flow is small compared with the horizontal length scale that charac- 
terizes the obstacle. Several authors have considered various aspects of the 
acoustic-limit problem, notably Gortler (1943), Mowbray & Rarity (1967), 
Lighthill (1967) and Hurley (1969).-f’ The generation of internal waves in the 
ocean by tidal flows over bottom topography has been discussed in this limit by 
Cox & Sandstrom (1962) and Baines (1 973). Of interest also in this regard is the 
work of Rattray et al. (1969) on the problem of the generation of internal tides 
a t  the continental margin. 

By comparison with these limiting cases, the general problem has received 
very little attention. Apart from the author’s doctoral dissertation (Bell 1973), 
parts of which serve as a basis for the present study, the only relevant work 
appears to be that of Mork ( 1  968), who considered the problem of internal wave 
generation by simple harmonic flow over an element of bottom topography in a 
stratified fluid of limited vertical extent, using the long-wave or hydrostatic 
approximation in the wave field. Mork’s solution for the resultant wave pattern 
is represented by a summation of non-dispersive internal wave modes, and is 
restricted in its validity to situations in which the relevant horizontal length 
scales of the problem are significantly greater than the depth of the fluid. There 
is no discussion of important second-order properties of the wave field, such as 
the flux of energy away from the obstacle which forces the waves. 

The present study attempts to elucidate the process of internal wave generation 
in the general case of the simple harmonic flow of a stratified fluid over an obstacle. 
For the sake of clarity, we reduce the problem to its essential elements of stable 
density stratification and a background flow with simple harmonic time depen- 
dence. We adopt a somewhat different approach to the problem from that taken 
by Mork (1968), in that we consider a fluid of unlimited vertical extent. Attention 
is thus directed to the generation process, uncluttered by any aspects of the 
propagation of internal gravity waves which may distract our attention. I n  3 2 
we develop the fundamental linearized solution for the internal wave field 
generated by the flow of a uniformly stratified fluid with basic velocity 

u = u, cos w,t 

over a two-dimensional obstacle. The properties of this fundamental solution are 
discussed in some detaiI in 5 3, including the passage of the solution to the quasi- 
static and acoustic limits. I n  the general case, waves are generated not only a t  
the fundamental frequency w,, but also a t  all of its harmonics; the fundamental 
frequency waves are sensitive to the slope of the obstacle, those of frequency 
213, to its curvature, and so forth for the higher harmonics. Only those waves of 
frequency less than the ambient Brunt-Vaisala frequency N are freely propa- 
gating, so that, in the far field, the wave pattern resembles a superposition of 
no V-shaped patterns when viewed from a reference frame convected by the 
basic flow, where n, is the largest integer less than Nlw,. I n  $4 the solution is 

t The discussion in Greenspan (1968, §4.4), of the analogous acoustic-limit problem in 
a rotating fluid, is also of interest. 
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found to compare favourably with the limited available experimental evidence 
(Lee 1972). Finally, $ 5  is devoted to the consideration of the flux of energy away 
from the obstacle. An expression is derived for the time average power in the 
internal wave field, i.e. for the rate at which energy from the basic flow is con- 
verted into internal wave energy. The behaviour of the time average power as 
a function of the sensible parameters of the problem is investigated by consider- 
ing as an example the flow over an obstacle of shape 1/(1 +x2), the classical 
Witch of Agnesi. It is found that, for values of /3 (defined as J2NL/U0,  where L 
is the characteristic width of the obstacle) somewhat greater than unity, the 
acoustic-limit approximation provides a reasonable estimate of the power in the 
wave field. Somewhat surprisingly, it is also found that, for values of wo/N less 
than about one half, the quasi-static approximation provides a not unreasonable 
estimate of the power for all /3. Bell (1973) discusses the geophysical implications 
of this problem. 

2. Fundamental solution 
We consider the flow of a stably stratified fluid over an obstacle for the case 

in which the forcing exhibits a simple harmonic time dependence. To render the 
problem tractable, we assume that the obstacle is such that its presence produces 
only a small perturbation to the flow field that would exist in its absence. The 
presence of the obstacle then presents a localized disturbance to the system; 
and it is a general property of stably stratified systems that disturbance energy 
is propagated away from the source region in the form of an internal gravity 
wave field. Now, in this study, we are interested in the generation of these waves. 
The essential elements that define the problem are stable density stratification 
and a basic unperturbed flow structure which varies harmonically with time. 
So we consider the uncluttered two-dimensional problem of the flow of an un- 
bounded uniformly stratified ( N 2  = const., where N is the Brunt-Vaisala fre- 
quency in terms of the acceleration of gravity and the density ; N 2  = - (g/p) ripldz)) 
Boussinesq fluid, over an obstacle, when the unperturbed flow structure is 
simply a spatially uniform horizontal flow with simple harmonic time depen- 
dence ( U  = U, cos wet), as illustrated in figure 1. 

Although Coriolis forces may be dynamically significant in oceanographic 
applications, our model is considered in a non-rotating reference frame. The 
inclusion of the effects of rotation is rather straightforward (see Bell 1973), 
and does not substantially alter the physical picture that emerges from the 
model considered here. Our consideration of a spatially uniform semi-infinite 
environment should not be construed as implying that in specific applications 
such effects as spatial inhomogeneity of the background state or the presence of 
boundaries a t  which internal wave energy is reflected will not be important. 
Indeed, they may be. Rather, such effects more properly belong not to the 
study of internal wave generation, but to the study of internal wave propagation. 
Here, we are concerned with the generation problem, and it is felt that the model 
considered here captures the essential physics of the problem. The wave genera- 
tion process should be adequately described by the model in those situations 
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N=const. =i 
u= u, cos "J' - - --A 

-J 

X 

FIGURE 1. Definition sketch illustrating model of back-and-forth flow of 
a stably stratified fluid over an obstacle. 

where the length scales characterizing variations in the background state 
(including the distances to boundaries) are substantially larger than the relevant 
length scales which characterize the model (Uo/N and geometric scales associated 
with the obstacle). The reader interested in questions of propagation is referred 
to Bretherton (1971) and Budden (1961). 

Small perturbations to the equilibrium state described above are governed 
by the equations 

(2 . la )  
1 

Po 
u,+ Uu, = - -px, 

1 9  w,+ Uw, = - -pz--p,  
Po Po 

pt + Up, = f! N2w, 
9 

(2 . lb )  

(2.lc) 

ux+wz = 0. ( 2 . l d )  

p, p ,  u, w are respectively the perturbation density, pressure and horizontal 
and vertical velocity components; po is a reference density; and independent 
variables in subscript position denote partial differentiation. Equations (2.1 a-d ) 
are readily transformed into a single equation for the perturbation vertical 
velocity 

The operator D is defined by 
D 2 V 2 ~ + N 2 ~ x x  = 0. (2.2) 

a a 
D = - + U -  

at ax, 

and Va is the Laplace operator. The operator D is not autonomous; rather it 
depends explicitly on time t through the time-dependent velocity field U(t) .  
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Boundary conditions in x and t for the solution of (2.2) are provided by the 
requirements that w be Fourier transformable in x and periodic in t. The boundary 
conditions in z provide the essence of the solution. At the bottom (z = O ) ,  the 
linearized boundary condition is that 

w = Udh/dx, (2.4) 

where h(x)  is the height of the obstacle which forces the motion. Within the 
linear approximation, this is equivalent to the condition that the total flow 
field (background plus waves) be locally tangential to the bottom topography. 
Above the bottom, we apply a radiation condition of upward energy flux, 
consistent with our notion of causality. 

The familiar linearized bottom boundary condition (2.4) in essence results 
from the assumption that the slopes of those wave rays that characterize the 
wave pattern be significantly greater than the characteristic slope H / L  of the 
obstacle that forces the motion, where H and L are respectively the character- 
istic height and width of the obstacle. In  considering this restriction imposed 
by the linearization, two important cases may arise, depending on the magnitudes 
of the ratios wo/N and Uo/wo L, where Uo/wo is identifiable as the amplitude of the 
horizontal motion in the basic state. The limit oo/N -+ 0 is recognized as a quasi- 
static limit in which the time derivatives in the governing equation may be 
consistently ignored, with the problem reducing to a slowly-varying version 
of the classical problem of lee waves in a steady stratified flow. In  this case, 
U / L  becomes the characteristic frequency of the waves, and the representative 
slope of the wave rays is then UINL,  so that, when wo/N < 1, we require that 
N H / U  < 1. 

In the other important limiting case, corresponding to U,/w,L-+O, the 
problem reduces essentially to the other classical problem of a vibrating distur- 
bance in a stationary stratified fluid, referred to here as the acoustic limit. In 
such a case, the representative slope of the wave rays is wo/N, so that when 
U,Iw,L < 1 we require that NHIw,L < 1.  In  the general case where the ratios 
wo/N and U,/w,L are of the order unity, the conditions are equivalent. If the 
appropriate linearization condition is violated, nonlinear upstream influence or 
blocking effects may prevail. The nature of such nonlinearities is discussed by 
Miles (1971); of interest also are the experiments of Browand & Winant (1972). 
Of course, validity of the linearization in the boundary condition ensures 
validity of the linearization in the governing equations. 

Returning to the solution of the problem, we introduce the Fourier transform 

with inverse 

( A )  = ( ) exp ( - Z K X )  dx, 
J --m 

i r-m 

and the governing equation (2.2) becomes 

&z2a,, - K ~ ( N ~  + @) z2 = 0, 
where 5 a/at + i~ U .  

( M a )  

(2.5b) 
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It is convenient to introduce a co-ordinate system moving with the basic state. 
To this end, we set 

= G exp ( - i.1: U(7)  d7). (2.7) 

Then 

where 

Gexp (kt) dK = w(x, z, t ) ,  (2.8a) 

(2.8b) 

is the horizontal co-ordinate in a reference frame fixed with respect to the back- 
ground flow. The bottom boundary condition is then transformed to 

which, with U = Uo cos wot, may be expressed as 

m 

G(K,  0, t )  = A c (inw,) exp (inw,t) J,(Kv,/w,), (2.9) 
n = - m  

where J is the Bessel function of the first kind (see Watson 1966, 92.22). 
We now may seek a Fourier series solution of the form 

m 

G(K,  x ,  t )  = L(K) c P,(K; 2) exp ( inwot )  J , ( K ~ / W ~ ) ,  
n = - m  

where the amplitude function Vn must satisfy 

P;+K2(”-l)Pn n2wg = 0, (2.10) 

with primes denoting differentiation with respect to z. The solution of (2.10), 
subject to the bottom boundary condition P,(K; 0) = inw,, is 

P,(K; z )  = inwoexp (ip,z), (2.11) 

where 

and the solution must be rendered determinate by the proper choice of sgnp,, 
as follows. The solution is composed of a spectrum of component waves of the 
form A ,  exp i$,, where the phase function $, is such that 

I n  the oscillatory case ( N 2  > n2wE), the vertical component of the group velocity 
is then 
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which is positive, corresponding to upward energy propagation, for 

sgn pV1 = sgn n. 

In the evanescent case ( N 2  < n20$), we must choose the solution that decays with 
height. In  general, then, we have, for N 2  > n2w$, 

and, for N 2  < n20& 

p = i - (n20$-N2)4. L:,I 
(2.12a) 

(2.12b) 

The general solution is then given by 

i -  m 

w(x, z, t )  = - I; noo/ A(K) Jn(~UO/oO) exp i [ ( ~ [  +p,z + noot)] d ~ .  (2.13) 
27~,=-m - W  

Since h(x) is real, we may express the general solution in the form 

00 * no 
w(x,  z, t) = - C 2 Im/ A(K) Jn(~UO/oO) exp [i(~&+p,z +noot)] d ~ ,  (2.14) 

where <, given by (2.8b), is the horizontal position in a reference frame moving 
with the background flow. 

n=l  7T - w  

3. Properties of the solution 
The amplitude 7 of the wave field is defined by the linearized equation 

w = T t f  UY,, 

so that, referring to (2.14), we may express the amplitude of the disturbance as 

1 -  

r n = 1  
q(x,z,t) = - X Re exp[i(~<+p,z+nw,t)]d~, (3.1) 

where p, is given by (2.12), and 5 is horizontal distance measured in a reference 
frame moving with the basic flow, as given by equation (2.8b). For z = const., 
the integral in (3.1) is simply proportional to exp inw,t, provided that the co- 
ordinate x is varied with time in such a way as to duplicate the motion of a fluid 
element convected by the basic flow. This solution is a superposition of wave 
motions not only at  the fundamental frequency wo, but also a t  all of its har- 
monics. But only those contributions such that n < N/oo are correctly identified 
as wavelike, the contributions for n > N/o,  being vertically evanescent (i.e. 
exhibiting an exponential decay with height above the bottom). In  the far 
field, then, for < and z large, we need only consider the oscillating contribution to 
the solution. Designating the oscillatory or wavelike part of the solution by T ~ ,  
we then have 

1 no 

T n = 1  
yw(x,z,t) = - C Re e x p [ i ( ~ < + p , z + n ~ ~ t ) ] d ~ ,  (3.2) 
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FIGURE 2. Schematic configuration of wave field for a,, = 0.45N, viewed in reference 
frame fixed with respect to background flow. - - -, maximum excursion of obstacle; long 
arrows, directions of energy propagation (C,,) ; short arrows, directions of phase propaga- 
tion (Cp) .  

where no is the largest integer less than Nlo,. For the purposes of discussing the 
far-field behaviour of the solution, it is more convenient to express the oscillatory 
contribution as 

Invoking a classical argument, we expect that, as <, z+m, the rapid oscillation 
of the complex exponentials will nullify any sensible contribution to the wave 
field except along those lines such that z = R, <, where 

These lines are readily identified as the characteristics of internal waves of 
frequency nw, (i.e. those lines along which the internal wave energy propagates 
away from the disturbance). In  a reference frame fixed with respect to the 
background flow (i.e. one in which the obstacle moves harmonically back and 
forth along the bottom), the wave pattern should then resemble a super- 
position of no V-shaped patterns with vertices centred at  (<, z )  = (0, 0), as 
illustrated in figure 2. Lines of constant phase are parallel to the characteristics 
and wave phase propagates normal to the characteristics. From the form of the 
phase functions q5, = (K< k ,unz rt. nw,t), it is apparent that, along z = R, <, 
phase propagates in the direction of increasing < and decreasing z, while along 
z = - R, <, phase propagates in the direction of decreasing < and decreasing z. 
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From the form of the solution in (3.2), it  is apparent that the different har- 
monics are sensitive to different features of the obstacle that forces the motion. 
Rewriting ( 3 . 2 )  in the form 

we may identify K ~ ~ ( K )  as i-n times the Fourier transform of dnh/dxn, provided 
that h is sufficiently smooth that the Fourier transform exists. We may also 
identify ic-nJn(Ku,/wo) as the Fourier transform of a function f n ( x ) ,  where 
(Erdelyi et al. 1954, $1.12) 

Thus, provided that dnh/dxn is Fourier transformable for all n < no, we may 
represent the wave field as 

P , ( ~ ) e x p [ i ( ~ ~ + ~ , ~ + n w , t - - n n ) ] d ~ ,  (3 .5 )  

where, by the convolution theorem, P,(K) is the Fourier transform of a smoothed 
version of dnhldxn, given by 

with f n ( x )  given by (3.4). Thus, the waves of fundamental frequency w, are 
sensitive to the slope of the obstacle, the first harmonic (n = 2 )  to its curvature, 
and so forth for the higher harmonics. The reason for this becomes apparent if 
we think of the solution in terms of a formal expansion scheme, u = u1 + u2 + . . . , 
in which the convective acceleration term Uau,/ax is systematically neglected 
in the governing equations for the nth contribution, but appears in the equations 
for the (n+ 1)th contribution as a non-homogeneous forcing term. The first 
term (n = 1) is forced by the flow over the bottom (Udh/dx), and therefore in- 
volves waves of fundamental frequency and is sensitive to the bottom slope. 
The second term (n = 2) is forced by the convective term Uau,/ax, and therefore 
involves waves of frequency 2w, and is sensitive to the slope of the n- 1 term 
(i.e. to the curvature of the bottom). The n = 3 term involves waves of frequency 
3w0, and is sensitive to the slope of the n = 2 contribution, etc. 

The smoothing expressed by (3.6) acts over a length 2A0, where, with 

Lo = u o / @ o ,  

2L, is simply the total horizontal excursion of a fluid element convected by the 
background flow. At a given point in C,z space, then, that component of the 
wave field of frequency nw, ‘sees only a strip of bottom of length ZL,, centred 
a t  the point where the appropriate wave characteristic passing through the 
observation point intersects the bottom. I n  other words, for such a reference 
frame (in which the obstacle moves back and forth), waves of frequency nu, a t  



714 T. H. Bell 

a given observation point are influenced by only that part of the bottom topo- 
graphy intersecting the base of the wave characteristic appropriate to the fre- 
quency nw, passing through the observation point. As L,/L+ 0, where L is the 
length scale that characterizes variations in h(x) ,  the impulse response of the 
filter as expressed by (3.4) behaves more and more like a Dirac spike. This is 
the classical acoustic limit in which fluid elements convected by the background 
flow move back and forth over only a small fraction of the width of the obstacle, 
or conversely the obstacle moves back and forth over a distance small compared 
with its width. I n  the limit then, as w,L/U,-tc~, the wave field is given by 

provided, of course, that dnhldxn is Fourier transformable for all n < no. From 
the form of (3.7), it is apparent that the fundamental frequency waves (n = 1) 
must dominate the wave field generated by flow over a smooth obstacle in the 
limit w, LIU, + 03. 

The limit wo/N + 0 is identifiable as a quasi-static limit, in which the effect 
of the time derivatives in the governing equations (2.1) should be negligible. 
I n  discussing this limit, it is convenient to refer to the general solution given by 
(2.131, which may be expressed in terms of the wave amplitude by 

y = 2 '1 q,exp(iKx)dK, 
W m 

( 3 . 8 ~ )  
,= -w2?7 --a, 

n+O 

Expressing the Bessel function by its well-known integral representation, we 
then have that 

If, as is consistent with the quasi-static approximation, we use 

r t  

in (3.9), we then have 

so that, for n = KU&,, 

while otherwise q, N 0. I n  the quasi-static limit (wO/N+ 0), then, we have 

l"i, N Lexp (ipnz), 
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n Ray slope 

1 0.13 
2 0.27 
3 0.43 
4 0.62 
5 0.87 
6 1.29 
7 2,37 

TABLE 1. Slopes of characteristics for internal waves of frequency 
nw,, in Lee’s (1972) experiment. 

where, for N 2  > K ~ U ~ ,  

and, for N 2  < ic2U2, 

in agreement with the classical lee wave result (see Miles 1969). 

,u = sgn ( K U )  (N2/ U2 - K ~ ) Q ,  

p = i ( K 2  - N2/U2)$ ,  

(3.1 1 a), 

(3.11 b )  

4. Comparison with experiment 
The phase configuration described in $3,  is of course, exactly that observed 

in the well-known experiments of Gortler (1943) and Mowbray & Rarity (1967), 
the latter of which incidentally illustrates clearly the generation of waves not 
only at  the fundamental frequency, but also a t  its admissible harmonics. 
Unfortunately, these experiments, although elegant and qualitatively significant, 
do not permit a quantitative evaluation of the theory presented here. But the 
experiments Lee (1972) are useful in this connexion. Lee’s work was designed 
primarily as a study of the generation and propagation of long nonlinear waves 
although one particular set of observations is relevant here. 

In  the experiment of interest here, an obstacle of approximate shape 

h(x)  = HL2/(22+L2) (4.1) 

(the classical Witch of Agnesi), with H = 2.3 cm and L = 3-1 cm, was towed 
back and forth along the bottom of a tank filled with stably stratified salt water 
( N  = 0.63 s-1) to a depth of 38.4 cm. The fundamental period of the obstacle’s 
motion was 76 s ( N / w ,  = 7.6), the amplitude of its excursion, Lo, being 27.5 cm. 
The amplitude of the wave field was measured by several conductivity probes 
located at a height of 12.6 cm above the bottom. Unfortunately, the represen- 
tative slope of the obstacle ( H / L  = 0.74) is not small compared with the slopes 
ofthe wave characteristics (given in table 1) in this experiment, so that we cannot 
expect the linear theory presented here to be strictly valid, especially in so far 
as the lower harmonics are concerned, although some agreement might be 
expected for the higher harmonics, especially n = 7 .  

Lee presents the results of this experiment in the form of wave forms observed 
a t  two probe locations. But the location of only one of the probes (probe A) is 
unambiguously specified: [ = 57.5 em. We examined the ray paths corre- 
sponding to waves a t  the fundamental frequency and its harmonics, so as to 
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FIGURE 3. Geometry of energy propagation in Lee’s (1972) experiment, drawn to scale. 
+ , ray path for waves of frequency 7w0 ; 0, probe location ; - - - - , maximum excursion 
of obstacle. 

76s *-q 
FIGURE 4. Wave form observed a t  probe location indicated in figure 3. 

Fundamental period (2n/wo) is 76 s. 

determine whether or not this probe lies on or near any of the characteristics. We 
found that the probe location corresponds to an angular deviation of approxi- 
mately 0.01 rad from the ray path for the sixth harmonic (n = 7). The geometry 
is illustrated to scale in figure 3. The closest other trajectory is associated with 
the first harmonic (n = 2), with an angular deviation of some 0.06 rad from the 
probe location. The output of the probe is reproduced in figure 4. The wave form 
illustrated in this figure is obviously dominated by the sixth harmonic (n = 7). 
From (3.3), our theory predicts an amplitude of 

I%[ Iv L f q  exp ( - K L )  4WO) d K ,  
0 

where (see Watson 1966, 5 13.2) 

Thus, with L = 3.2 cm and Lo = 27.5 cm, we predict (q7[ - 1.2 mm, in good 
agreement with the observed wave amplitude. At the second probe, which was 
located at  a somewhat larger but unspecified 5 co-ordinate, the signal was less 
coherent, although exhibiting a definite component of periodicity at a frequency 
of Two. Although rather limited, this comparison at least indicates a certain 
degree of consistency between the theory and experiment. 
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5. Energy flux 
It is well known (Miles 1969) that, accompanying the flow of a stratified fluid 

over an obstacle, there is a systematic pressure drop from the windward to the 
leeward side of the obstacle, resulting in a horizontal force, the wave drag, 
acting on the obstacle. Within the framework of linear theory, the net hori- 
zontal force per unit cross-stream length acting on the obstacle is given by 

which, on integrating by parts and substituting from (2.1) for the pressure, 
and invoking Parseval’s relation, may be expressed as 

where asterisks are used to denote complex conjugates. In  the problem con- 
sidered here, the force as expressed by (5.1) includes not only the pressure force 
associated with the internal wave field, but also an acceleration reaction arising 
from the time-dependent nature of the background flow. Averaged over the 
fundamental period 257/w0, the net force on the obstacle vanishes. However, the 
flow is doing work against the pressure force, and this rate of working is simply 
equal to the power in the internal wave field (i.e. the rate at which energy is 
being fed into the internal wave field). 

Averaged over the fundamental period 2n/w0, the power per unit cross-stream 
length in the internal wave field is given by the average value of U(t )P( t ) ,  i.e. 

Substituting from (2.1) and (2.13) and evaluating the time average as in (2.9), 
we obtain 

(5.3) 

for the time average power. 
For discussion, it is convenient to normalize the power by some reference 

value. Miles (1969) suggested the value impo U2NH2, where H is the height of 
the obstacle, as a convenient reference in dealing with steady flows. As discussed 
by Miles, this reference value arises from the problem of minimizing the wave 
drag on an obstacle of prescribed cross-sectional area and base L in the ordered 
limit H/L+O, U+O. To normalize the time average power, we replace U 2  by 
its average value +U;, and define 

(5.4) E = ?F/$;.po U; NH2.  

Normalizing (5.3), we thus have 



71 8 T. H. Bell 

If we further non-dimensionalize within (5.5), by setting 

f = wo/N,  k = KL, p = EILH, P = ,/2NL/U0, 

where L is the characteristic width of the obstacle, we obtain the convenient 
expression 

for the normalized time average power in the internal wave field. 
The behaviour of E as a function of the parameters f and P is perhaps best 

demonstrated by considering a specific example. To this end, we consider an 
obstacle shaped in the form of the well-known Witch of Agnesi, so that, with 
h(x) given by (4.1), 

Qm = mexP(- lkI). (5.7) 

Using the subscript A to designate the Witch of Agnesi, we then have that 

The behaviour of E,  as a function of /? is illustrated in figure 5 for various values 
off; the curve for f = 0 is based on the steady flow solution of Miles & Huppert 
(1969) 

EAl,=O = W[1+ Q (.ID) F 2 ( 2 P )  4 2 ( 2 P ) ) l ,  (5.9) 

where L and 1 are the modified Struve and Bessel functions, respectively. For 
P 1,wemayreplace Jn(J2k/Pf) in (5 .8)  byitslimitingform (Iln!) (kfJ2pf)n. In  
the acoustic limit (P+m), then, the dominant contribution to the power resides 
in waves of fundamental frequency (n = I) ,  and 

E ,  N *(I  - f2))". (5.10) 

The asymptotic value of the power as given by (5.10) is also indicated in figure 5 
for the pertinent values off. It is apparent from figure 5 that for values of P 
somewhat larger than unity the acoustical-limit approximation provides a 
reasonable estimate of the rate at  which the energy is supplied to the wave field. 
Somewhat surprisingly, figure 5 also indicates that, even for large values of P, 
the quasi-static limit (f -+ 0 )  provides a viable approximation to the power for 
values off less than about one half. 

Although the conclusion that the quasi-static limit provides a viable approxi- 
mation for f 2 4 is based on the results of our analysis of the Witch of Agnesi 
profile, it is probable that a similar conclusion is valid for more general obstacles. 
In  the general case, we have the asymptotic form 

(5.11) 

in the limit /3-> 03, provided that h(x) is no - I times continuously differentiable. 
It is then apparent that setting f = 0 results in at  worst a 15 yo error in the power 
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P 
FIGURE 5. Normalized power EA in internal wave field generated by simple harmonic 
stratified flow over Witch of Agnesi profile, as a function of /3 for various values off. - - - -, 
limiting values of EA for P + 03. 

estimate in the limit of large P.T By the same token, it may be inferred from 
the general result for small P, (5.14), that the quasi-static approximation yields 
a correct result for the power to within a factor of 2 for f < 6 (see also figure 6). 
These general asymptotic results for large and small P, when combined with 
the calculated results for the Witch of Agnesi profile for intermediate values 
of p, tend to support the conclusion that, in general, the quasi-static approxima- 
tion may be expected to provide a viable estimate of the power for values off 
less than about 4. 

The behaviour of E, for P < 1 is illustrated in figure 6, in which we have 
plotted EA/pz as a function of ,8 for the values off included in figure 5. The form 
of E, as P + O  is obtained as follows. Referring to (5.8), we may integrate by 
parts (see Watson 1966, §5.12), to obtain 

Referring to Watson (1966, §13.22), we have that 

1 OD exp ( -  2k)  Jk (g) dk = - Pf QT,%.+(l +Pzf 2) ,  

0 J2n 

where Q is the Legendre function of the second kind. Now, as Pzf2+ 0, 

&,-&I +pZfz) N -+ln(+P2f2) - y - $ ( m + & )  

t It is readily verified that the general expression for the power in the steady case 
(see Miles 1969, (7.3)) reduces to (5.11), withf = 0 in the limit p + co for continuous h(z).  
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P 
FIGURE 6 .  Normalized power EA for p < 1 and various values off, 

plotted as E*/P2. - - -, limiting values of EAIP~ for p .+ 0. 

(see Erdeyli et al. 1953, $3.9.2), where y is Euler’s constant and $ is the psi or 
digamma function. Thus, as p2 f -+ 0, we have 

(5.12) 

although the approach to this asymptotic value is rather slow, the error being 
of order pf lnpf. As f -+ 0, the summation in (5.12) tends to an integral, 

so that, for f = 0, EA N QP2, in agreement with Miles & Huppert’s result. 
As discussed by Miles & Huppert, the limit p -t 0 is properly identified as the 

Rayleigh scattering limit. In  this limit, the flow field is locally potential in the 
vicinity of the obstacle, with the effects of stratification being felt only as dis- 
tances of order U / N  from the obstacle. In  the Rayleigh scattering limit, then, 
we may replace the obstacle by an equivalent dipole, so that, in general, we have, 
as B-t 0, 

The integral in (5.13) is simply EL special case of the Weber-Schafheitlin dis- 
continuous integral (see Watson 1966, $13.42), so that, in general, we have 

(5.14) 

in the Rayleigh scattering limit, p-+ 0. 
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Although much of the discussion in this section concerns a specific example, 
based on the Witch of Agnesi profile, it  is to be expected that the results are of 
more general interest, especially those on the applicability of the various 
limiting forms. Of special interest are the conditions under which the bulk of 
the power in the wave field is concentrated in waves of fundamental frequency. 
For /3 9 1, the dominant contribution to the power was found to reside in the 
waves of fundamental frequency for all but the smallest values off. But, for 
/3 < 1, as indicated by the form of (5.14), this is cert,ainly not the case. There it 
is immediately apparent that the fundamental waves may be considered domi- 
nant only for f somewhat greater than 1/%/5, since below this value the contri- 
bution for n = 2 is greater than that for n = I. This observation suggests a 
convenient division of parameter space for the purposes of estimating the flux 
of energy into the internal wave field. For values off = wo/iV less than about 4, 
the quasi-static approximation should yield power estimates that are at worst 
approximately 25% low. On the other hand, for values in excess of 8, viable 
estimates of the power may be obtained by considering only the contribution 
associated with the fundamental frequency wo. For p greater than about 2, this 
contribution may be adequately estimated by the acoustic limit, as expressed by 
(5.11). 

6. Conclusion 
We have investigated in some detail the process of internal gravity wave 

generation by the back-and-forth flow of a stably stratified fluid over an obstacle. 
To isolate the essential physics of the phenomenon, we have retained only the 
essential elements of stable density stratification (characterized by a constant 
Brunt-Vaisala frequency N )  and a simple harmonic time dependence in the 
background flow ( U  = Uocoswot). The fundamental solution derived here was 
found to compare favourably with the limited available experimental evidence. 
Special attention was given to the behaviour of the solution in several important 
limiting cases, and to estimating the flux of energy into the internal wave field. 
Although in general waves are generated not only a t  the fundamental frequency 
wo, but also at all of its harmonics, it is found that, for values of wo/N greater 
than about one half, the waves of fundamental frequency are dominant. On the 
other hand, for values of wo/N less than about one half, the quasi-static approxi- 
mation, in which the problem is considered as a slowly-varying version of the 
classical lee wave problem, is found to provide a viable estimate for the wave 
field. 
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